
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-495/595: Special Topics – Reconfigurable Computing Fall 2018

1 Instructor: Daniel Llamocca

Laboratory 4
(Due date: November 1st)

OBJECTIVES
✓ Design an AXI4-Full Interface for a custom VHDL peripheral.
✓ Integrate the custom VHDL peripheral in an embedded system in Vivado.
✓ Create a software application in SDK that can handle the custom peripheral.

VHDL CODING

✓ Refer to the Tutorial: VHDL for FPGAs for a tutorial and a list of examples.

✓ Refer to the Tutorial: Embedded System Design for Zynq SoC for information on how to create AXI interfaces for custom

peripherals as well as embedded system integration in Vivado.

FIRST ACTIVITY (100/100)
▪ Using Vivado, create an AXI4-Full Interface for the iterative CIRCULAR CORDIC that you developed in Lab 2: Use the same

format ([16 14]) for the inputs and outputs.

▪ AXI4-Full Interface: You can use the iFIFO/oFIFO approach used for the Pixel Processor (See Notes – Unit 5):
✓ FSM @ S_AXI_ACLK: It is the same as the one used for the Pixel Processor.
✓ FSM @ CLK_FX: This FSM controls the Input and Output interfaces to the FIFOs as well as FIFOs’ signals.
✓ Input and Output Interfaces: Since AXI bus size is 32 bits wide, we need to properly route data in and out of the CORDIC

hardware that requires more than 32 bits. This circuit runs @ CLK_FX.
▪ Draw a schematic of the circuit that runs at FSM @ CLK_FX (Input/Output Interfaces to the FIFO and the FSM). Connect

CLK_FX to S_AXI_CLK.
▪ If you decide to use a different approach, provide a detailed schematic of your AXI4-Full interface.

▪ Once you have your custom AXI4-Full Peripheral, integrate it into an embedded system using the Block-Based Design

approach in Vivado.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_wren
mem_rden

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

CIRCULAR CORDIC

s done

In
pu

t I
nt

er
fa

ce

rst

O
ut

pu
t I

nt
er

fa
ce

16 Xin

16

16

Yin

Zin

mode

16

16

16

Xout

Yout

Zout

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-495/595: Special Topics – Reconfigurable Computing Fall 2018

2 Instructor: Daniel Llamocca

▪ SDK Software application: Test it for the following cases by writing all the input data (one right after the other), and then
retrieving all the output data. Print the results (via UART).
✓ Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 5𝜋 8⁄ .

✓ Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 4⁄ .

✓ Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 2⁄ .
✓ Rotation Mode: 𝑥0 = 1 𝐴𝑛⁄ , 𝑦0 = 0, 𝑧0 = − 𝜋 7⁄ .

✓ Vectoring Mode: 𝑥0 = 𝑦0 = 0.125, 𝑧0 = 0

✓ Vectoring Mode: 𝑥0 = 0.35, 𝑦0 = −0.35, 𝑧0 = 0
✓ Vectoring Mode: 𝑥0 = 0.5, 𝑦0 = 0.3, 𝑧0 = 0

✓ Vectoring Mode: 𝑥0 = 0.5, 𝑦0 = −0.3, 𝑧0 = 0

▪ Download the hardware bitstream on the ZYNQ SoC.
▪ Launch your software application on the Zynq PS. The program should display the output results on the Terminal.

Demonstrate this to your instructor.

▪ Submit (as a .zip file) the generated files: VHDL code, .c files to Moodle (an assignment will be created). DO NOT submit

the whole Vivado Project.

Instructor signature: _____________________________ Date: __________________________

